On an example in second order linear ordinary differential equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the stability of linear differential equations of second order

The aim of this paper is to investigate the Hyers-Ulam stability of the  linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$  $fin C[a,b]$ and $-infty

متن کامل

Singular Eigenvalue Problems for Second Order Linear Ordinary Differential Equations

We consider linear differential equations of the form (p(t)x′)′ + λq(t)x = 0 (p(t) > 0, q(t) > 0) (A) on an infinite interval [a,∞) and study the problem of finding those values of λ for which (A) has principal solutions x0(t;λ) vanishing at t = a. This problem may well be called a singular eigenvalue problem, since requiring x0(t;λ) to be a principal solution can be considered as a boundary co...

متن کامل

Lecture 18: Ordinary Differential Equations: Second Order

2. General Remarks Second order ODEs are much harder to solve than first order ODEs. First of all, a second order linear ODE has two linearly independent solutions and a general solution is a linear combination of these two solutions. In addition, many popular second order ODEs have singular points. Except for a few cases, the solutions have no simple mathematical expression. However, there is ...

متن کامل

Modified Laplace Decomposition Method for Singular IVPs in the second-Order Ordinary Differential Equations

  In this paper, we use modified Laplace decomposition method to solving initial value problems (IVP) of the second order ordinary differential equations. Theproposed method can be applied to linear and nonlinearproblems    

متن کامل

On Conjugacy of High-order Linear Ordinary Differential Equations

It is shown that the differential equation u(n) = p(t)u, where n ≥ 2 and p : [a, b] → R is a summable function, is not conjugate in the segment [a, b], if for some l ∈ {1, . . . , n− 1} , α ∈]a, b[ and β ∈]α, b[ the inequalities n ≥ 2 + 1 2 (1 + (−1)n−l), (−1)n−lp(t) ≥ 0 for t ∈ [a, b],

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1966

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1966-0201730-7